
Diagnosing an Artificial Trend in NLDAS-2 Afternoon Precipitation

CRAIG R. FERGUSON

Atmospheric Sciences Research Center, and Department of Atmospheric and Environmental Sciences,

University at Albany, State University of New York, Albany, New York

DAVID M. MOCKO

Hydrological Sciences Laboratory, NASA GSFC, Greenbelt, Maryland, and

Science Applications International Corporation, McLean, Virginia

(Manuscript received 26 October 2016, in final form 30 December 2016)

ABSTRACT

While investigating linkages between afternoon peak rainfall amount and land–atmosphere coupling

strength, a statistically significant trend in phase 2 of the North American Land Data Assimilation System

(NLDAS-2) warm season (April–September) afternoon (1700–2259 UTC) precipitation was noted for a large

fraction of the conterminous United States, namely, two-thirds of the area east of the Mississippi River, during

the period from 1979 to 2015. To verify and better characterize this trend, a thorough statistical analysis is

undertaken. The analysis focuses on three aspects of precipitation: amount, frequency, and intensity at 6-hourly

time scale and for each calendar month separately. At the NLDAS-2 native resolution of 0.1258 3 0.1258,
Kendall’s tau and Sen’s slope estimators are used to detect and estimate trends and the Pettitt test is used to

detect breakpoints. Parallel analyses are conducted on both NARR and Modern-Era Retrospective Analysis

for Research and Applications, version 2 (MERRA-2), subdaily precipitation estimates. Widespread break-

points of field significance at the a5 0.05 level are detected in the NLDAS-2 frequency and intensity series for

all months and 6-h periods that are absent from the analogous NARR and MERRA-2 datasets. These

breakpoints are shown to correspond with a July 1996 NLDAS-2 transition away from hourly 28 3 2.58NOAA/

CPC precipitation estimates to hourly 4-km stage II Doppler radar precipitation estimates in the temporal

disaggregation of CPC daily gauge analyses. While NLDAS-2 may provide the most realistic diurnal pre-

cipitation cycle overall, users should be aware of this discontinuity and its direct effect on long-term trends in

subdaily precipitation and indirect effects on trends in modeled soil moisture, surface temperature, surface

energy and water fluxes, snow cover, snow water equivalent, and runoff/streamflow.

1. Introduction

The 0.1258 3 0.1258 1-hourly meteorological forcing

dataset from phase 2 of the North American Land Data

Assimilation System (NLDAS-2; Xia et al. 2012a,b) is a

very widely used forcing dataset for offline hydrological

simulations conducted over the conterminous United

States (CONUS) for the period from 1979 to present.

The NLDAS has a rich history dating back to the initi-

ation of its first phase in 2000 (NLDAS-1; Mitchell et al.

2004). In design, NLDAS closely resembles the Project

for the Intercomparison of Land-Surface Parameteri-

zation Schemes (PILPS; e.g., Henderson-Sellers et al.

1995; Pitman and Henderson-Sellers 1998; Pitman et al.

1999; Wood et al. 1998) conducted under the auspices of

the World Climate Research Programme’s Global En-

ergy and Water Exchanges project (GEWEX). Specifi-

cally, the NLDAS best-estimate forcing dataset enables

intercomparisons among participating models to isolate

parameterization-related differences. However, a valid

criticism of both PILPS and NLDAS is that through

focusing attention on model physics they have effec-

tively shifted attention away from important data forc-

ing uncertainties.

Uncertainties in precipitation forcing have the largest

impact on offline and coupled hydrological simulations

(e.g., Fergusonet al. 2010;Gochis et al. 2016;Panet al. 2010).
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The diurnal cycle of precipitation, including precipita-

tion phase (i.e., solid or liquid) and aspect (amount,

frequency, and intensity), helps determine surface run-

off partitioning and thereby flood frequency and sever-

ity, groundwater recharge, evapotranspiration, and

vegetative water stress. Currently, resolving the sum-

mertime diurnal rainfall cycle over the central United

States is a particular weakness of weather and climate

models (e.g., Lee et al. 2007; Liang et al. 2004; Yamada

et al. 2012) and one that is closely related to their sys-

tematic warm and dry biases over the region (e.g., Klein

et al. 2006).

Land–atmosphere coupling [for a review, seeSeneviratne

et al. (2010)] serves as one mechanism through which

wetting and drying trends over land can translate into

concomitant changes in the diurnal precipitation cycle.

Under conditions of strong land–atmosphere coupling not

uncommon to the central United States and other mid-

continental regions (e.g., Guo et al. 2006; Koster et al.

2006), soil moisture anomalies can nudge the diurnal

precipitation cycle through their effect on the surface heat

flux partitioning (e.g., Findell and Eltahir 2003a,b). Song

et al. (2016) showed that the central United States’ normal

nocturnal (0300 local time) precipitation peak climatology

(e.g., Wallace 1975) was interrupted on strong land–

atmosphere coupling days with afternoon peak precipita-

tion. Because of the extent that precipitation is dependent

on precursor cloud formation, any changes in subdaily

precipitation frequency would likely be accompanied by

shifts in subdaily cloudiness, which could have wide-

ranging impacts on the surface radiation budget (Dai

et al. 1999). For example, a shift toward enhanced night-

time (precipitation) cloudiness would suggest increased

surface net radiation and warming. Conversely, a shift

toward enhanced daytime (precipitation) cloudiness would

suggest decreased surface net radiation and cooling.

High-resolution (7km or finer) mesoscale models run

with explicit (as opposed to parameterized) convection

and precipitation processes have been shown to better

capture the diurnal precipitation cycle (Dirmeyer et al.

2012; Erlingis andBarros 2014; Prein et al. 2015; Sato et al.

2009; Tao et al. 2013). However, more extensive verifi-

cation of these convection-resolving models over a larger

range of conditions with high-temporal-resolution pre-

cipitation datasets (1-hourly or less), like that of NLDAS,

is needed. An evaluation of the long-term diurnal pre-

cipitation cycle for nonstationarity is also needed because

its detection would signal a moving target in model de-

velopment. Thus, verification products are required to be

highly accurate and free from data discontinuities.

In this study, we address the following question: Are

there detectable trends inNLDAS-2 subdaily precipitation

characteristics (amount, frequency, and intensity) over

the period of record (1979–2015)? A climatology over a

10-yr period (1998–2007) using consistent input data

sources (detailed below in section 2a) of the diurnal cycle

of NLDAS-2 precipitation was examined in Matsui et al.

(2010). However, as far as we could determine, the in-

terannual variability of diurnal precipitation cycle over

CONUS has only previously been conducted at relatively

coarse (i.e., 2.58 3 2.08) horizontal resolution and for an

earlier period from1963 to 1993 (Dai 1999;Dai et al. 1999).

Preliminary analyses revealed statistically significant trends

in afternoon [1700–2259UTCor 1200–1759 daylight saving

time (DST)] precipitation amount from the start of the

NLDAS-2 record to the current most recently completed

year (1979–2015), especially in regions east of the Mis-

sissippi River (Fig. 1). The ensuing analyses, undertaken

to further diagnose these trends in the context of the

full diurnal cycle and all aspects of precipitation, are

detailed here. By design, this paper serves both as a

critical assessment of NLDAS-2 hourly precipitation

forcing and as a tutorial on a thorough statistical

methodology appropriate for long-term trend de-

tection on gridded datasets. When dealing with long-

term datasets, it is important to test for natural, as well

as artificial, data-driven discontinuities. The method-

ology presented fully considers breakpoints as well as

field significance and is appropriate whether or not

there is a priori knowledge of dataset inhomogeneities.

2. Data and methods

a. NLDAS-2

NLDAS-2 is a multimodel land modeling and assim-

ilation system run in an uncoupled mode on a common

0.1258 3 0.1258 grid covering CONUS, the southern

part of Canada, and the northern portion of Mexico

FIG. 1. Sen’s slopes in NLDAS-2 12–17 DST precipitation P

amount between 1979 and 2015, computed from the 6-month (April–

September) warm season (mm month21; i.e., 0.8mmmonth21 3
6 months5 4.8mmyr21). All plotted slopes are locally significant at

the 0.05 level. These results exclude FDR correction and subsequent

testing of field significance.
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(258–538N, 1258–678W). NLDAS is a collaboration proj-

ect among several groups: NOAA/NCEP/Environmental

Modeling Center (EMC), NASA Goddard Space Flight

Center (GSFC), Princeton University, the University of

Washington (UW), the NWS Office of Hydrologic De-

velopment (OHD), and the NCEP/Climate Prediction

Center (CPC). NLDAS is supported by the NOAA Cli-

mate Program Office’s Modeling, Analysis, Predictions,

and Projections (MAPP) program. NLDAS-2 may be

considered as the follow-on to NLDAS-1 (Mitchell et al.

2004). Like NLDAS-1, it provides standard near-surface

hourly griddedmeteorological forcing (i.e., forcing file A;

2-m air temperature and specific humidity, 10-m zonal u

andmeridional y wind speed, surface pressure, downward

shortwave and longwave radiation, and precipitation) as

well as collections of hourly model outputs from several

different LSMs driven by the same forcing, including soil

moisture/temperature, land surface temperature, surface

energy and water fluxes, snow cover, snow water equiv-

alent, and runoff/streamflow (Xia et al. 2009, 2012a,b).

NLDAS-2 provides a secondary forcing dataset, including

model-generated precipitation, based on the NCEP

North American Regional Reanalysis (NARR;Mesinger

et al. 2006) lowest prognostic model level (forcing file B).

Major differences between NLDAS-1 and NLDAS-2

include record length and choice of atmospheric re-

analysis used for nonprecipitation forcing. NLDAS-1

covers the 11-yr period from 1 August 1996 to 31 De-

cember 2007, whereas NLDAS-2 covers the complete

modern era from 1979 to present. NLDAS-1 used the

40-km, 3-hourly NCEP Eta Data Assimilation System

(EDAS;Rogers et al. 1996) analysis fields (Cosgrove et al.

2003) whereas NLDAS-2 used analysis fields interpolated

from the 32-km (;0.38 3 0.38), 3-hourly NARR.

In this study, we are only concernedwith theNLDAS-2

precipitation dataset as distributed in the forcing file A

(Xia et al. 2009). Discontinuities in the underlying inputs

are of direct relevance to our assessment of NLDAS-2

precipitation trends. In the following paragraphs, we will

provide an overview of the time-varying precipitation

inputs over CONUS, the focus region of our study. We

note that the NLDAS-2 record comprises three modes of

production: a 30-yr (from 1 January 1979 to 31December

2008) retrospective implementation completed in 2009

(Xia et al. 2102a, 2014); a subsequent near-real-time im-

plementation (from 1 January 2009 to 4 August 2014);

and most recently, a transition to NCEP Operational

Implementation (from 5 August 2014 to present). It is

important to stress that, for our purposes, knowing the

date of a shift from retrospective to real-time production

is not all telling. It is instead knowing the date of any shifts

from ‘‘retrospective’’ to ‘‘real time’’ versions of the con-

tributing gauge-based analysis that is paramount.

The NLDAS-2 precipitation analysis is composed of

two components: a daily gauge-based precipitation anal-

ysis and a subdaily gauge-, radar-, satellite-, or model-

based precipitation analysis used to perform temporal

disaggregation to hourly time scale. Over CONUS,

NLDAS-2 used an improved CPC/OHD daily gauge-

based analysis (Fan et al. 2006; Shafran et al. 2004) from

1979 to 2011. This product differs from the more widely

used (and documented) CPCUnified Raingauge Dataset

(URD; Higgins et al. 2000) in three aspects. First, CPC/

OHD applied a Parameter-Elevation Regressions on

Independent Slopes Model (PRISM; Daly et al. 1994)

orographic adjustment based on the 1961–90 climate

normal versus no terrain adjustment in theURD. Second,

CPC/OHD applied an inverse-square distance-weighting

interpolation (modified Shepard’s method; Renka 1988)

with a 50-km search radius versus a modified Cressman

(1959) scheme (Charba et al. 1992; Glahn et al. 1985)

with a 200-km search radius used by URD. Third, CPC/

OHD was produced on the 0.1258 3 0.1258U.S. NLDAS

grid versus the URD 0.258 grid. The CPC/OHD pro-

cessing algorithm is widely accredited to John Schaake

(e.g., Luo et al. 2005; Mesinger et al. 2006). Starting on

1 January 2002, the CPC/OHDproduct went ‘‘real time’’;

the number of contributing stations (;12000) droppedby

nearly one-third (Mo et al. 2012, their Fig. 2) but the

methodology remained the same. Since 1 January 2012,

NLDAS-2 has used the global real-time 0.1258 3 0.1258
CPC Unified daily gauge-based precipitation analysis

(Chen et al. 2008).

Which subdaily precipitation estimates are used to

temporally disaggregate the underlying daily gauge-

based analysis depends on data availability, and varies

in space and time. It is important to note that the tem-

poral disaggregation to hourly only determines the time

of day when the precipitation falls; the daily amounts

remain the same from the gauge-based analysis. Over

CONUS, during the period from July 1996 to present,

available 4-km hourly Doppler radar stage II pre-

cipitation estimates (Lin and Mitchell 2005) are used to

temporally disaggregate the CPC/OHD daily gauge-

based analysis into hourly precipitation. From Decem-

ber 2002 to present, if stage II data are unavailable, then

8-km, 30-min CPC morphing technique (CMORPH;

Joyce et al. 2004) precipitation estimates are used. If

neither stage II nor CMORPH data are available (espe-

cially prior to July 1996), then 2.08 3 2.58 hourly CPC

Hourly Precipitation Dataset (HPD; Higgins et al. 1996)

estimates are used for temporal disaggregation. Outside

of HPD’s period of coverage (from January 1979 to

September 2002), NARR 32-km (;0.38 3 0.38), 3-hourly
model-simulated precipitation (available from January

1979 to present) serves as the ultimate fallback dataset.
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Unfortunately, no log files were generated in the pro-

duction of NLDAS-2 to document which precipitation

sources were used for which days and grid cells.

b. NARR

The NARR record is composed of a retrospective

simulation from 1979 to 2002 and a real-time continua-

tion of NARR from 2003 to present, using the Regional

Climate Data Assimilation System (R-CDAS). NARR

assimilates gauge-based precipitation inputs by altering

the model’s vertical profiles of latent heating, water

vapor, and cloud water during the hourly assimilation

intervals (Lin et al. 2001). Thus, there should be a very

good correspondence between precipitation amount

and diurnal cycle and observations (e.g., Ruane 2010).

Over CONUS, during NARR’s retrospective period

from 1979 to 2002, the NARR hourly precipitation anal-

ysis is obtained by temporally disaggregating the 24-h

CPC/OHD analysis (discussed above) using the CPC

HPD (Higgins et al. 1996). Between January 2003 and

mid-2013, bothNLDAS-2 and real-timeNARR(R-CDAS)

shared the same precipitation analysis (Mo et al. 2012).

In mid-2013, NCEP ported the NARR code from its

IBM P6 Advanced Interactive eXecutive (AIX) Cen-

tral Computing System (CC) to a new IBM iDataPlex

Intel Linux Weather and Climate Operational Super-

computing System (WCOSS). NARR runs conducted on

the WCOSS were inadvertently set to ingest the North

American Mesoscale Forecast System (NAM; WRF-

NMM; Janjić 2003) predicted precipitation instead of the

CPC Unified gauge-based analysis. Because NCEP was

running NARR on both CCS andWCOSS for a period of

time, the exact date of theWCOSS transition is difficult to

pinpoint, but it falls between March and July 2013. Offi-

cially, NCEPCentral Operations (NCO) NARRWCOSS

data transmissions began on 1 July 2013 (W. Ebisuzaki

2016, personal communication). By mid-January 2015,

NCO NARR had returned to using the CPC Unified

product, consistent with NLDAS-2. A separate, experi-

mental NARR run led by Wesley Ebisuzaki contains the

input precipitation fix fromSeptember 2014 (W.Ebisuzaki

2016, personal communication).

Because NARR and NLDAS-2 use a consistent daily

gauge-based analysis for most of the study period (1979–

2015), their precipitation fields should be comparable,

especially at the daily time scale. Major differences be-

tween NLDAS-2 and NARR subdaily precipitation

characteristics should be attributable to the use of dif-

ferent datasets in their respective hourly temporal dis-

aggregation. Namely, NLDAS-2 has employed stage II

radar data since July 1996 and NARR/R-CDAS has not.

In this study, we analyzed NARR hourly precipitation

obtained from the NLDAS-2 forcing file B dataset. The

NARRdataset was interpolated from its native 0.38 3 0.38
resolution to 0.1258 3 0.1258 resolution following the

budget bilinear method, which uses 25 neighboring points

instead of the typical 4 neighboring points used in basic

bilinear interpolation (NASA 2016).

c. Other datasets

In parallel and in an identical manner, we also

assessed long-term trends in bothNASA’sModern-Era

Retrospective Analysis for Research and Applications,

version 2 (MERRA-2; Molod et al. 2015), precipitation

and in Livneh et al. (2015, hereafter L15) precipitation.

MERRA-2 covers the modern satellite era (from 1980 to

present) using a new version of the Goddard Earth Ob-

serving System Model, version 5 (GEOS-5). We analyzed

both MERRA-2 forecast precipitation (prectot) and the

MERRA-2 bias-corrected precipitation (prectotcorr) ob-

tained from the 0.6258 (longitude)3 0.58 (latitude) hourly
surface flux diagnostics collection (tavg1_2d_flx_Nx;

GMAO 2015). Both fields were bilinearly interpolated to

the NLDAS 0.1258 3 0.1258 grid. The prectotcorr dataset
is used in place of prectot to force MERRA-2’s land sur-

face scheme, as similarly performed in MERRA-Land

(Reichle et al. 2011). From 1980 to 2005 and 2006 to 2015,

prectotcorr over CONUS is based on the global CPC

Unified (Chen et al. 2008) retrospective and real-time

product, respectively. In the case of MERRA-2, the CPC

Unified daily gauge-based analysis is temporally dis-

aggregated usingMERRAmodel-simulated precipitation.

Because of the sparseness of contributing gauge stations to

CPC Unified at high latitudes, prectotcorr tapers back to

prectot northward of 42.58N and is entirely prectot

northward of 62.58N. As an aside, trend and breakpoint

results are nearly identical when MERRA-2 is instead

interpolated using conservative box averaging.

The 0.06258 3 0.06258 daily gauge-based L15 dataset

covering Mexico, CONUS, and southern Canada for the

period 1950–2013 was developed to remedy a paucity of

gauge data inMexico, the lack of orographic precipitation

adjustment over Mexico and Canada, and significant

discontinuities at Mexico–U.S.–Canada boundaries pres-

ent in earlier UW heritage gridded precipitation datasets

(Livneh et al. 2013; Maurer et al. 2002; Wood and

Lettenmaier 2006). The UW heritage precipitation data-

sets are distinct from the NLDAS-2 precipitation dataset

(described above) in that they use only a subset of Na-

tional Climatic Data Center’s (NCDC) Cooperative Ob-

server Program gauge stations selected on the basis of

data quality and stability (Andreadis et al. 2005). For

example, L15 uses only 8844 gauge stations over CONUS

that satisfy a 20-yr minimum record length. In other re-

gards, the L15 and NLDAS-2 precipitation approaches

are relatively consistent. For example, L15 applied the
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Synagraphic Mapping System (SYMAP) interpolation

algorithm (Maurer et al. 2002; Shepard 1984), which is

very similar to the modified Shepard’s interpolation ap-

plied in NLDAS-2. And both L15 and NLDAS-2 applied

PRISM to account for topographical effects, although

L15 used a more modern climate normal period (i.e.,

1981–2010) that coincides with the monitoring era (from

1979 to present) of the high-elevation USDA Natural

Resources Conservation Service (NRCS) Snowpack Te-

lemetry (SNOTEL) network (Crook 1977; Serreze et al.

1999). Because of L15’s greater attention to network

stability and topographic correction, it represents an im-

portant comparison dataset at the daily time scale. For

our analyses, L15 was resampled to the 0.1258 3 0.1258
NLDAS-2 grid using box averaging.

d. Methods

All UTC hourly datasets (i.e., NLDAS-2, NARR, and

MERRA-2) were first postprocessed into DST hourly

datasets and subsequently used to generate 6-hourly DST

diurnalmonthlymean time series of precipitation amount,

frequency, and intensity. The 6-h time windows are de-

fined as 0–5, 6–11, 12–17, and 18–23 DST, where 0–5 DST

corresponds with 0000–0559 DST, for example, and DST

is computed by solving for the local standard time (LST)

within each time zone (using its UTC offset) and then

adding 1h. Precipitation amount is calculated as the

hourly mean accumulation over the specified 6-h time

window. Precipitation frequency is calculated as the

number of hours within the specified 6-h time window

for which 0.1258 3 0.1258 precipitation rate exceeded

0.0004mmh21. Precipitation intensity is calculated as the

quotient of precipitation accumulation and frequency (i.e.,

number of wet hours) over the specified 6-h time window.

Over CONUS, the minimum rate filter screens out 0.5%

of NLDAS-2 hourly precipitation events. An equivalent

precipitation rate threshold (i.e., 0.1mmh21 at 28 upscaled
from 0.1258) was applied by Dai et al. (1999).

The ensuing statistical analysis was conducted on a

0.1258 3 0.1258 grid cell basis for all of CONUS (m 5
52412 land grids) using the 6-hourly DST diurnal

monthly mean time series of precipitation amount, fre-

quency, and intensity. The analysis consisted of simulta-

neous slope estimation and detection of breakpoints,

followed by an assessment of their field significance (e.g.,

Livezey and Chen 1983). The phrase ‘‘field significance’’

will denote field significance on the CONUS domain at

the two-tailed, a 5 0.05 level, unless otherwise specified.

The subdaily analysis time scale served our objective of

understanding the nature of the 1979–2015 wetting trend

in 12–17 DST precipitation amount (Fig. 1).

As a starting point, we checked for a trend and posi-

tive lag-1 serial correlation—both at the a 5 0.05 local

significance level—using the nonparametric rank-based

Mann–Kendall test (MK) (Kendall 1975; Mann 1945)

and the autocorrelation function (ACF; Venables and

Ripley 2002), respectively. If no significant trend or se-

rial correlation was detected, then the Pettitt (1979)

breakpoint test is applied to the original time series.

Otherwise, a modified trend-free prewhitening (TFPW;

Yue et al. 2002) procedure is implemented as follows:

1) A Theil–Sen (Sen 1968; Theil 1950) nonparametric

slope is estimated from the original data and is used

to compute a residual or detrended series. Theil–Sen

has previously been shown to be less sensitive to

outliers than linear regression (Hirsch et al. 1982;

Lettenmaier et al. 1994).

2) ACF is used to compute the positive lag-1 serial

correlation of the detrended series. If serial correla-

tion is not found to be significant, then both the MK

and Pettitt tests are applied to the original series (end

here). If the serial correlation is significant at the

a5 0.05 level, then the detrended series is prewhitened

with an autoregressive lag-1 [AR(1)] model.

3) The Theil–Sen trend (step 1) is added back to the

TFPW series of step 2 to produce a blended TFPW

series that includes the trend of the original series (if

existent) without autocorrelation.

4) The MK trend significance and Pettitt breakpoint

tests are applied to the blended TFPW series. If

a significant breakpoint is detected, then the same

procedure described above, as pertains to the MK

test, is applied to each homogenous subseries seg-

ment (i.e., prior 5 1:break date; posterior 5 break

date 1 1:n; where n is the record length).

The nonparametric Pettitt test is based on the Mann–

Whitney test for evaluating whether two independent

samples come from the same population [for a review,

see Mallakpour and Villarini (2016)]. It is designed to

detect a single abrupt change in the mean of the distri-

bution of the variable of interest at an unknown point in

time. It has been widely used with hydroclimatological

data (e.g., Bárdossy and Caspary 1990; Busuioc and von

Storch 1996; Ferguson and Villarini 2012; Liu et al. 2012;

Villarini et al. 2009; Wijngaard et al. 2003) and is most

sensitive to breaks that occur in the middle of the series.

Accounting for trends and breakpoints in each other’s

presence is essential. The presence of a monotonic trend

could lead to false detection of a breakpoint by the Pettitt

test (e.g., Beaulieu et al. 2012). Likewise, the presence

of a breakpoint could lead to a false MK trend detection.

For our analysis, in cases when both a significant mono-

tonic trend and a breakpoint are detected, the MK test is

applied separately to each homogenous subseries seg-

ment (see above). If a significant trend (p # 0.05) of the
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same sign is detected for each segment, then the break-

point is disregarded as an artifact of the trend. Otherwise,

the breakpoint is accepted and the trend is disregarded.

The confidence level used to evaluate significance of the

ACF was computed from the 97.5th percentile of the

standard normal distribution. Our results were obtained

using R 3.2.3 (R CoreDevelopment Team 2011) with the

trend v0.0.1 package (Pohlert 2015).

After trends and breakpoints of local significance at the

a5 0.05 level are found, they are subsequently tested for

field significance on the CONUS domain following the

false discovery rate (FDR) approach as described by

Benjamini and Hochberg (1995). Field significance test-

ing allows for the determination of the percentage of si-

multaneous tests that are expected to show a trend, at a

given local significance level, purely by chance (i.e., type I

errors). The family-wise type I error rate (FWER), as it is

called, is based on both the individual error rate and the

number of comparisons (e.g., domain size). For a single

(grid cell) comparison, the type I family error rate is equal

to the local significance level (a 5 0.05). However, each

additional (grid cell) comparison causes the FWER to

increase in a cumulative manner. Only by accounting for

FWER may the significance of local (grid cell) statistics

be supported with appropriate confidence.

The FDR procedure controls this multiplicity (selec-

tion) effect by requiring local p values [computed per

Eq. 2.12 in Pettitt (1979)] be less than or equal to a re-

scaled global significance level aglobal:

p
i
#

i

m
a
global

, (1)

where p1 # p2 # ⋯ # pm are the ordered local p values,

m is the number of tests (cells; m 5 52414), and aglobal is

set in our case to equal 0.05. Only those points where pi
satisfies (#) Eq. (1) are deemed field significant at the

global 5% significance level. Field significance was de-

termined in this way for each analysis case (i.e., month/

6-h time window/precipitation aspect) for trends and

breakpoints. Importantly, the full distribution of local p

values over CONUS is included in the ordered p set, not

just the subset satisfying local significance at the 0.05 level

(Tramblay et al. 2013). If none of the local p values satisfy

the bracketed conditions in Eq. (1), then none of them are

deemed to be field significant, and consequently the global

null hypothesis is not rejected (Wilks 2006). Field signifi-

cance depends on the choice of domain boundaries. In this

case, the CONUS domain was selected because it encom-

passes the area impacted by stage II radar data integration.

Prior studies have proven the FDR procedure of

Benjamini and Hochberg (1995) robust to positive cross

correlations (including spatial correlations) and suitable

for work with any statistical test for which one can

generate a p value (Khaliq et al. 2009; Renard et al. 2008;

Ventura et al. 2004; Wilks 2006). Relative to the conven-

tional counting and Walker’s tests for field significance,

Wilks (2006) found FDR to be preferable in most in-

stances. A convenience of the FDR is that its ceiling (and

proportion of false rejections) may be controlled in the

context of the global test [Eq. (1)]. Further explanation of

the FDR method is provided by Miller et al. (2001).

3. Results

a. CONUS breakpoint and trend detection

An initial step in our methodology (see section 2d) was

to screen for lag-1 autocorrelation in the data. When data

are significantly autocorrelated, any test statistics derived

from those data will be based on an effective sample size

that is less than the actual sample size. The average per-

cent of CONUS cells affected by autocorrelation is 1.8%,

8.4%, and 5.0% across all months and 6-h time windows

for NLDAS-2 precipitation amount, frequency, and in-

tensity, respectively. The equivalent statistics for NARR

are 1.9%, 2.6%, and 2.2%. For MERRA-2 prectot and

prectotcorr, the statistics are comparably less: ;1.3%,

;1.4%, and ;1.1%. For the monthly precipitation

amount analyses (discussed below), the average percent

of CONUScells affected by autocorrelation is 0.8%–1.6%

across all months and data products (i.e., NLDAS-2,

NARR, MERRA-2 prectot and prectotcorr, and L15).

Accordingly, while correcting for autocorrelation is im-

portant, it was probably not essential to ensuring validity

of our statistical analysis in this case.

Another aspect of our approach, field significance

testing, should also be discussed at this point. To satisfy

field significance, local (grid cell) p values needed to be

substantially less than 0.05. For example, NLDAS-2

local p values less than or equal to 0.015, 0.042, and 0.029

were required to satisfy field significance at a 5 0.05,

respectively, for 6-h precipitation amount, frequency,

and intensity. In the case of NARR, those values were

0.009, 0.008, and 0.011, respectively. For MERRA-2

prectot and prectotcorr, all local p values had to satisfy

p# 4.53 1024 for precipitation amount, frequency, and

intensity. For trends and breakpoints in daily pre-

cipitation amount, Eq. (1) is rarely satisfied. In sum-

mary, our results satisfy a much stricter significance

criterion than studies testing local significance only.

To first rule out the possibility of spurious shifts in the

NLDAS-2 daily mean precipitation record, we per-

formed trend and breakpoint analyses on monthly mean

precipitation amount from NLDAS-2 (1979–2015) and

four comparison datasets at 0.1258 3 0.1258 resolution:
NARR (1979–2015), MERRA-2 prectot (1980–2015),
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MERRA-2 prectotcorr (1980–2015), and L15 (1979–

2013). Over CONUS, no field significant trends or

breakpoints were detected in NLDAS-2, MERRA-2

(prectot and prectotcorr), or L15—for any month (i.e.,

January, February, . . . , December). Only a negligible

number (less than 30) were found in the case of NARR

(not shown). Having verified consistency among the five

products at the daily time scale in this sense, we proceeded

with our planned analyses at subdaily time scale.

Analysis of subdaily precipitation amount yielded

noteworthy results for the 0–5 DST time window. More

than 10% of CONUS was found to have field significant

breakpoints for the months of January–March, May, and

November (Figs. 2a, 3). The coverage of field significant

breakpoints inNARR0–5DSTprecipitation amountwas

generally below 10% (Fig. 2b). Both NLDAS-2 and

NARR0–5DSTprecipitation amount time series yielded

field significant trends in March over 7% of CONUS,

largely organized in the central United States (Fig. S1

in the supplemental material). Over the 37-yr period

(1979–2015), the detected trends of 0.1mmh21 yr21

amount to a total reduction of 2.2 cm in 0–5 DST pre-

cipitation amount (Fig. S1 in the supplemental mate-

rial). The CONUS field significance coverage for trends

in all other months and 6-h periods (i.e., 6–11, 12–17,

and 18–23 DST) was less than 2.7% and 1% for NLDAS-2

and NARR, respectively (Figs. S2–S4, S11–S14 in the

supplemental material).

The trends in NLDAS-2April–September 12–17 DST

precipitation amounts that originally motivated this

study (Fig. 1) were determined to be artifacts of break-

points. Of the statistically significant trends detected,

most—93% east of the Mississippi River—can be at-

tributed to abrupt, statistically significant breakpoints.

Figure 4 underscores the pervasiveness of breakpoints in

frequency and intensity, especially. It also shows the role

of time-averaging period on detection of field significant

breaks in NLDAS-2 precipitation amount, frequency,

and intensity. Relative to precipitation frequency and

intensity, the detectability of breakpoints in amount is

much more sensitive to the averaging period. Specifi-

cally, detectability undergoes a steady decline from 6 to

3months, and a precipitous drop from 3 to 1month. This

result is likely related to differences in the natural var-

iability of precipitation amount versus frequency and

intensity; a higher natural variability in precipitation

amount could explain lower breakpoint detectability.

Field significant breakpoints in NLDAS-2 precipita-

tion frequency cover 24%–87% of CONUS for any given

month and 6-h time window with median coverages of

63%, 49%, 39%, and 60% for 0–5, 6–11, 12–17, and 18–23

DST, respectively (Figs. 5a–d, 6; Figs. S5–S7 in the sup-

plemental material). The coverage of field significant

breakpoints in NARR precipitation frequency ranges

from only 0% to 16% of CONUS for all months and 6-h

time windows (Figs. 5i–l; Figs. S15–S18 in the supple-

mental material). Less than 2% of CONUS is found to

exhibit a field significant trend in NLDAS-2 or NARR

precipitation frequency for all months and 6-h time

windows (not shown).

FIG. 2. The fraction (0–1) of CONUS 0.1258 3 0.1258 grid cells

affected by either a Pettitt breakpoint (gray bars) or Sen’s slope

(line with circles) of field significance at the 0.05 level for

(a) NLDAS-2 and (b) NARR0–5DSTP amount during the period

from 1979 to 2015. Horizontal red lines denote monthly median

values for breakpoint coverage.
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Field significant breakpoints in NLDAS-2 precipita-

tion intensity were generally less widespread than those

detected in frequency, but still remarkable, with a me-

dian CONUS coverage of 2.7%, 24%, 40%, and 15% for

0–5, 6–11, 12–17, and 18–23 DST (Figs. 5e–h, 7; Figs. S8–

S10 in the supplemental material). The median CONUS

breakpoint count in NARR intensity is approximately

7% for 0–5DST and less than 0.3% for all other 6-h time

windows (Figs. 5m–p). For the 0–5 DST window, it is

interesting to note that whereas NLDAS-2 experienced a

large number of breakpoints in frequency and a negligi-

ble number of breakpoints in intensity, the opposite oc-

curs with NARR (Figs. 5a,e,i,m). Accordingly, the

breakpoints in NARR 0–5 DST precipitation amount

(Fig. 2b) are more likely to be explained by breakpoints

in intensity than frequency.

Overall, there is no discernible seasonality to the

breakpoint count results (Figs. 2, 5). Spatially, however, a

few seasonal tendencies can be noted: 1) breakpoints in

NLDAS-2 0–5DST precipitation amount tend to occur in

the west (Fig. 3); 2) breakpoints in NLDAS-2 12–17 DST

precipitation frequency occur in the south and Southeast

in December–February and expand north and northeast

over the course of the year (Fig. 6); and 3) breakpoints in

NLDAS-2 12–17 DST precipitation intensity are focused

over the eastern United States in July and August, are

additionally detected in the Northwest from November–

March and in the high plains from April to June, and

generally are not detected over the south and Southwest

(Fig. 7). Only the breakpoint count maps corresponding

to NLDAS-2 12–17 DST frequency and intensity are in-

cluded here in the interest of space and keeping with the

FIG. 3. Maps of Pettitt field significant break dates at the 0.05

level for 0–5 DST NLDAS-2 P amount, for months with greater

than 10% field significant coverage (Fig. 2a): (a) January,

(b) February, (c) March, (d) May, and (e) November.

FIG. 4. For 12–17 DST P amount, frequency, and intensity, the

CONUS fraction with detected Pettitt breakpoints of local signif-

icance at the 0.05 level (hollow bar) as well as of field significance at

the 0.05 level (filled bar). Statistics are provided for a cascade of

diminishing time periods, including: April–September (AMJJAS),

April–August (AMJJA), April–July (AMJJ), April–June (AMJ),

April (A), May (M), and June (J).
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underlying land–atmosphere coupling theme (Song

et al. 2016). However, breakpoint count maps for both

NLDAS-2 and NARR, for all other months, 6-hourly

time periods, and precipitation aspects are included as

supplemental material (Figs. S2–S22).

Figure 8 provides the break-date histograms corre-

sponding to the breakpoint count bar plots provided in

Figs. 2 and 5. Figure 8a shows the break-date histograms

for NLDAS-2 (bar) and NARR (line) 0–5 DST amount.

Figures 8b and 8c and Figs. 8d and 8e show the break-date

histograms for NLDAS-2 and NARR frequency and in-

tensity, respectively. Note that in Figs. 8b–e, the bar graph

corresponds to the full sample of all 6-h time window

results, whereas each grayscale line corresponds with a

different 6-h time period. Recall that a break date marks

the last year in a homogenous segment, or the year prior

to the shift. The median break date of the total sample

(bar histograms) is marked by a vertical red line, which

is shown to fall between 1996 and 1999. Using the Bai–

Perron breakpoint test (Bai and Perron 2003; Ferguson

and Villarini 2014), we tested the same time series (i.e.,

NLDAS-2 and NARR estimates, for all months, 6-h

time windows, and precipitation aspects) for significant

breakpoints in 1996 and 1997 (i.e., using a segment

length of h 5 18 yr). All instances of a Pettitt field

significant breakpoint were found to satisfy Bai–Perron

FIG. 5. The fraction (0–1) of CONUS 0.1258 3 0.1258 grid cells affected by a Pettitt breakpoint (gray bars) of field significance at the 0.05
level during the period from 1979 to 2015 computed for (a)–(h)NLDAS-2 and (i)–(p) NARR6-hourlyP frequency and intensity. Note the

y-axis scales for NLDAS-2 and NARR differ. Horizontal red lines denote monthly median values where nonnegligible.
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breakpoint requirements at the 0.05 local significance level.

Conversely, for all instances (i.e., NLDAS-2 and NARR

estimates, for all months, 6-h time windows, and precipi-

tation aspects) of locally significant Bai–Perron break-

points fewer than six were uncorroborated by a Pettit field

significant breakpoint.

The fact that the median break date for NLDAS-2 cor-

responds with the known July 1996 transition to stage II

hourly radar data for temporal disaggregation is strongly

suggestive of a causal link. However, the fact that the

limited number of NARR cells with breakpoints also tend

to experience breaks around that time, especially in 0–5

DST precipitation intensity (Fig. 8e), suggests the potential

of either a shared bias in the underlying CPC/OHD data,

and/or the effect of natural variability. Indeed, 1997–98 is

well known for an extremely strongElNiño event followed
by a strong La Niña event (Cai et al. 2014; Changnon 2000;

Compo and Sardeshmukh 2010; McPhaden 1999).

However, a natural variability hypothesis is not supported

by theMERRA-2 prectot and prectotcorr results; less than

0.3% of all CONUS grids were determined to have field

significant breakpoints or trends in the case of all months,

6-h time windows, and precipitation aspects (not shown).

In Fig. 9, the results for four grid points selected for

significant increasing trends in NLDAS-2 12–17 DST

precipitation amount adequately demonstrate the meth-

odology in its application. Readily apparent is the influ-

ence of trends (red lines) and breakpoints (gray columns)

on the detection of one another. Significant trends in

precipitation amount at three grids are disregarded due to

the presence of breakpoints (Figs. 9a–c). Further, the is-

sue of local versus field significance is illustrated. While

the breakpoints in Figs. 9a and 9b appear substantial

when taken in isolation, only breakpoints in Figs. 9c, 9e,

9h, and 9j–l are field significant at the global 0.05 level. As

is typical, none of the breakpoint-generated series seg-

ments shown have a statistically significant slope, even at

the local 0.05 level. In Fig. 9d, NLDAS 12–17 DST P is

shown to be statistically homogenous at the 0.05 level

with a significant slope. If the series is instead tested at the

FIG. 6. Maps of Pettitt field significant break dates at the 0.05 level for 12–17 DST NLDAS-2 P frequency. Maps for other 6-h windows

(i.e., 0–5, 6–11, and 18–23 DST) are provided as supplemental material.
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0.11 level, then one would find a significant 1996 break-

point (not shown). In summary, Fig. 9 highlights the sen-

sitivity of results to the choice of significance threshold and

the prioritization of slope versus breakpoint detection.

b. Regional impacts

We have summarized the impact of breakpoints on

NLDAS-2 time-averaged precipitation amount, fre-

quency, and intensity for six subdomains of CONUS:

Northeast, Southeast, Midwest, high plains, south, and

west (see Fig. 10 for delineations). Specifically, Fig. 11

illustrates the difference in pre- and post-July 1996 area-

averaged means for each month, 6-h time window, and

precipitation aspect. Note that all land grids were in-

cluded in the calculation, whether or not a field signifi-

cant breakpoint was detected at their location. Filled

circles denote a difference at the 0.01 significance level.

The sharpest declines in precipitation amount be-

tween pre- and post-July 1996 periods across all regions

and months occur for 0–5 DST. The largest increases

occur in the 12–17 DST time window over the Northeast

and Southeast. For the west, precipitation amount in-

creased for 6–11 and 12–17 DST and decreased for

18–23 and 0–5 DST. In the south, a similar subdaily

statement holds, except that 18–23 DST precipitation

declined for May–September and changed very little for

October–April. In the Southeast, precipitation declined

for all 6-h windows, except 12–17DST. In the Northeast,

precipitation generally declined for 0–5 and 6–11 DST

and increased for 12–17 and 18–23 DST (Figs. 11a–f).

The Northeast and Southeast experienced 5%–20%

and 10%–35% declines in precipitation frequency, re-

spectively, with the largest declines occurring between

May and August for the 18–23 DST period. In fact, the

18–23 DST declines in the Southeast are the largest of

declines for all regions, months, and 6-h time windows.

TheMidwest and high plains experienced 10%–25% and

0%–15%declines, respectively, while theMidwest results

displayed perhaps themost well-defined seasonality of all

regions. Overall, the smallest precipitation frequency

FIG. 7. Maps of Pettitt field significant break dates at the 0.05 level for 12–17 DST NLDAS-2 P intensity. Maps for other 6-h windows

(i.e., 0–5, 6–11, and 18–23 DST) are provided as supplemental material.
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declines occurred for the December–February period

over the Northeast, Midwest, and high plains. The

south experienced 10%–20% declines on average with

slightly more substantial declines during May–July for

the 18–23 DST window. The west experienced 0%–20%

declines, with the exception of a slight increase in July for

the 12–17 DST period. The largest declines over the west

occurred between November and March (Figs. 11g–l).

FIG. 8. Histograms of Pettitt field significant break dates at the 0.05 level corresponding toFigs. 2 and 5: (a) 0–5DST

NLDAS-2 and NARR P amount, NLDAS-2 P (b) frequency and (c) intensity, and NARR P (d) frequency and

(e) intensity. The hollow black bars denote the histogram of the full sample, whereas the grayscale lines denote the

respective histogram for each 6-h time window (i.e., 0–5, 6–11, 12–17, and 18–23 DST), except in (a), where the gray

line denotes the NARR histogram. Vertical red lines denote the median break dates for each full sample histogram.
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All regions experienced an increase in precipitation in-

tensity in the range of 0–0.6mmh21, with the exception of

January andMarch in the high plains andMay–September

in the west for which declines were found in 0–5 DST

precipitation intensity. Notably, 0–5 DST saw the least

increases of all 6-h timewindows in all regions andmonths.

The largest increase in precipitation intensity occurred in

September over the Northeast during the 12–17 DST time

FIG. 9. Theil–Sen slope (red) and Pettitt breakpoint (gray) results for the NLDAS-2 12–17 DST P (a)–(d) amount (mmh21),

(e)–(h) frequency (h month21), and (i)–(l) intensity (mmh21) time series at four grids (see Fig. 10). From top to bottom, the time series

correspond to the following months: August, June, June, and April. Slope and breakpoint results are shown only when they meet local

significance at the 0.05 level. Blue lines denote the mean of statistically homogenous series (g) and (i), as well as series segments [all other

panels, except (d)]. Significant lag correlation was detected for (k), so analysis was conducted on a blended TFPW series (see section 2d).

For context, the NARR P and MERRA-2 prectotcorr time series are included.
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period. The Midwest’s response portrays a strong season-

ality, with a June–July maximum. Compared to other re-

gions, the Northeast and Southeast demonstrate a

relatively larger variation in subdaily response (i.e., among

6-h time periods; Figs. 11m–r). The fact that subdaily

variation (i.e., dispersion) inmean area-averaged response

is least for frequency and substantially greater for amount

and intensity is supportive of the 1996 radar hypothesis.

This result is also consistent with the greater prominence

of field significant breaks in NLDAS-2 frequency as

compared to amount and intensity (Figs. 2, 5).

A corresponding plot (to Fig. 11) for NARR is pro-

vided as supplemental material (Fig. S23). In the case of

precipitation amount, comparable shifts in magnitude

and seasonality are observed for all region–month–time

windows, although we do not see the same pronounced

peak impact in the Southeast at 12–17 DST.With regard

to precipitation frequency, declines are much less pro-

nounced in NARRwith frequency increases even found

for some regions. For example, whereas NLDAS-2 fre-

quency has diminished over the high plains and west,

NARR frequency has increased. Shifts in precipitation

intensity are relatively smaller in NARR—ranging

from 20.1 to 0.2—relative to 20.2 to 0.6 for NLDAS-2.

The NARR intensity shifts exhibit relatively less pro-

nounced seasonality over the Midwest and high plains

relative to NLDAS-2. Otherwise, for other regions the

NARR and NLDAS-2 seasonality is similar.

4. Summary and conclusions

We have presented a rigorous trend assessment of

NLDAS-2 subdaily precipitation amount, frequency, and

intensity over CONUS during the period from 1979 to

2015. Two critical aspects of the methodology, the si-

multaneous consideration of breakpoints and the evalu-

ation of field significance, were essential to reaching our

conclusion that the July 1996 switch to stage II radar data

for use in temporal disaggregation of daily gauge-based

inputs introduced a significant discontinuity in NLDAS-2

subdaily precipitation frequency and intensity. Un-

accounted for, this discontinuity, or breakpoint, leads to

the erroneous detection of significant trends in pre-

cipitation. Breakpoint-induced trends are particularly

evident in warm season (April–September) afternoon

(12–17 DST) precipitation records east of the Mississippi

River (Figs. 1, 4). When breakpoints are accounted for,

less than 2% of CONUS is found to exhibit field signifi-

cant trends in any aspect of subdaily precipitation at the

monthly scale, with the exception of 0–5 DST pre-

cipitation amount over the central United States (Fig. S1

in the supplemental material). Field significant testing

was undertaken to account for FWER,which is especially

relevant considering spatial correlation lengths of pre-

cipitation, and enabled us to assign appropriate confi-

dence to the significance of local (grid cell) statistics.

Unfortunately, the issue of field significance is commonly

overlooked in weather and climate studies.

The attribution of detected breakpoints is always a

difficult task. Breakpoint detectability is a function of

several factors, including the spatial and temporal scales

at which the analysis is conducted (e.g., Fig. 4), the

background natural variability of the target variable (e.g.,

precipitation) over the study domain and period (e.g.,

season), the record length, the number of (natural and

artificial) inhomogeneities, as well as the sensitivity (or

FIG. 10. Delineated in grayscale, the six CONUS subdomains selected to quantify broad

area-averaged impacts of stage II hourly Doppler radar P estimates on NLDAS-2 subdaily P

characteristics since their July 1996 introduction. The domains are 1) Northeast, 2) Southeast,

3) Midwest, 4) high plains, 5) south, and 6) west. They are consistent with the climate regions of

the U.S. Drought Monitor with slight variation in the high plains and west. The green crosses

correspond to grid locations called out in Fig. 9.
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FIG. 11. The shift in 0.1258 subdaily NLDAS-2 P (a)–(f) amount (mmh21), (g)–(l) frequency (h month21), and

(m)–(r) intensity (mmh21) between preradar (from January 1979 to July 1996) and postradar (from August 1996 to

December 2015) period means (i.e., postradar minus preradar) for the six CONUS subregions shown in Fig. 9. Lines

are colored according to the corresponding 6-h time window. Filled circles signify that the difference of the period

means is statistically significant at the 0.01 level according to a two-tailed Student’s t test; only 13 (1.5%) differences

failed to achieve significance at this level. A gray horizontal line is drawn to highlight y 5 0 (no change in mean).
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limitations) of the detection algorithm itself (e.g., Ferguson

and Villarini 2012; Mallakpour and Villarini 2016). Be-

cause of the issues of detectability, discontinuities—even

thoseoccurring over large spatial scales—are not uniformly

detectable across affected grids. In our application, near

coincidence of a natural breakpoint, the very strong

1997/98 El Niño, and the July 1996 median break date

(Fig. 8) could confound breakpoint attribution. Ide-

ally, supporting metadata are available in these in-

stances to enable the distinction between natural and

artificial breakpoints (i.e., test the observational net-

work hypothesis). Indeed, the NLDAS-2 July 1996

system-wide introduction of stage II radar data is well

documented.

Other important aspects of theNLDAS-2 precipitation

analysis were not documented, however, such as the

precise precipitation product used in hourly temporal

disaggregation at the daily, grid-specific scale. Forcing

data discontinuities of this kind also serve to confound

breakpoint attribution. Currently, the lessons learned in

this and similar studies are being applied toward making

the third phase ofNLDASmore transparent. Specifically,

fields will be included in each hourly forcing file that

detail how many (and which) stations were used in the

precipitation analysis, which dataset was used for tem-

poral disaggregation at each grid point for each hour, data

quality indicators, etc. Other data providers have already

made progress along similar lines. Namely, observation

feedback archives that document assimilated observa-

tions at each analysis time were recently released for the

NOAA Cooperative Institute for Research in Environ-

mental Sciences (CIRES) Twentieth Century Reanalysis

(20CR, version 2c; Compo et al. 2011) and the 111-yr

European Centre for Medium-RangeWeather Forecasts

(ECMWF) pilot reanalysis of the twentieth century

(ERA-20C; Poli et al. 2013).

In spite of the aforementioned detectability issues and

the likely existence of additional natural and artificial

discontinuities in the NLDAS-2 precipitation record,

our results indicate that the single most remarkable

discontinuity occurs circa 1996 and is linked to the July

1996 radar transition. The strongest evidence in support

of the radar hypothesis is the detection of large numbers

of breakpoints in subdaily precipitation frequency and

intensity, as compared to a negligible number in pre-

cipitation amount (Figs. 2, 5). Furthermore, breakpoint

counts were largely undetected in NARR, MERRA-2

prectot, and MERRA-2 prectotcorr, across all aspects of

subdaily precipitation. All of these products use a similar

daily gauge-based analysis. So, anyNLDAS-2 differences

should be linked to its hourly temporal disaggregation.

Coincidentally, themedian break date (1996–99)matches

irrefutably well with the July 1996 transition to stage II

radar for temporal disaggregation (Fig. 8). The likelihood

that circa 1996 breakpoints, including those detected in

0–5 DST NARR precipitation amount, are linked to nat-

ural variability is low because they are not corroborated by

MERRA-2.

The extent of the 1996 discontinuity’s impact on re-

gional mean subdaily precipitation amount, frequency,

and intensity was quantified for six subdomains of

CONUS. The severity of the discontinuity’s knock-on

effect in land surface modeling applications is likely to

vary widely according to surface scheme (e.g., physics,

soil, and vegetative parameterizations), study domain,

and simulation period. Issues with the precipitation will

affect the soil moisture, land surface temperature, surface

energy and water fluxes, snow cover, snow water equiv-

alent, and runoff/streamflow. Nearing et al. (2016)

benchmarked the NLDAS-2 participating models using

observations of soil moisture and evapotranspiration to

separate uncertainty contributions of the forcing, the

model physics, and the parameters. They found that

parameters dominated uncertainty in the simulated soil

moisture while forcing dominated uncertainty in the

simulated evapotranspiration. The largest effects will

likely occur in the densely vegetated Northeast and

Southeast due to canopy interception and evapotrans-

piration processes (e.g., Reichle et al. 2011). In any

case, NLDAS-2 subdaily precipitation is unfit for long-

term trend assessment starting from before mid-1996.

Concerning the most recent 20-yr record (1996–2015),

no field significant Pettitt breakpoints were detected

for any 6-h period, month, or precipitation aspect

over CONUS.

As a standard practice, we recommend that users

perform a statistical analysis on all key forcing datasets

at the spatial–temporal resolution of their intended

application prior to conducting model simulations.

Separately, offline simulations may be used to assess

the precise sensitivity of a given land scheme’s hydro-

logic representativeness to shifts in the forcing (diurnal

precipitation cycle). Importantly, our analysis did not

discriminate between precipitation phase (solid vs liq-

uid) and character (convective vs stratiform), which

may be important considerations depending on the

application. We note that the ongoing work of the

GEWEX Hydroclimatology Panel (GHP) crosscut

project Intelligent Use of Climate Models for Ad-

aptation to Nonstationary Hydrological Extremes

(INTENSE) stands to enhance the accessibility and

quality of subdaily gauge-based precipitation records

(e.g., Blenkinsop et al. 2017).
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